Doctor and Master in environment for the Valencia University- Spain. Fisheries Engineer(UNICA - Perú) and Lawyer (Alas Peruanas - Perú). Graduate Teaching: Villarreal, San Marcos, UNI, Cantuta, Trujillo, Cajamarca, among other. Undergraduate Teaching in the FIPA (UNICA). This blog is provided to indicate views, news and information with respect to environment and natural resources.

II INTERNATIONAL SEMINAR: 18 TO 22 DE NOVEMBER 2009- PISCO - ICA - PERI.

II INTERNATIONAL SEMINAR: 18 TO 22 DE NOVEMBER 2009- PISCO - ICA - PERI.
NUEVO

Entrevista en el Colegio de Ingenieros del Peru

sábado, 23 de mayo de 2009

Fire Is Important Part of Global Climate Change


Report Scientists
April 23, 2009

(Santa Barbara, Calif.) –– Fire must be accounted for as an integral part of climate change, according to 22 authors of an article published in the April 24 issue of the journal Science. The authors determined that intentional deforestation fires alone contribute up to one-fifth of the human-caused increase in emissions of carbon dioxide, a heat-trapping gas that raises global temperature.

The work is the culmination of a meeting supported by the Kavli Institute for Theoretical Physics (KITP) and the National Center for Ecological Analysis and Synthesis (NCEAS), both based at UC Santa Barbara and funded by the National Science Foundation.

The authors call on the Intergovernmental Panel on Climate Change (IPCC) to fully integrate fire into their assessments of global climate change, and to consider fire-climate feedbacks, which have been largely absent in global models.

The article ties together various threads of knowledge about fire, which have, until now, remained isolated in disparate fields, including ecology, global modeling, physics, anthropology, and climatology.

Increasing numbers of wildfires are influencing climate as well, the authors report. "The tragic fires in Victoria, Australia, emphasize the ubiquity of recent large wildfires and potentially changing fire regimes that are concomitant with anthropogenic climate change," said first author David Bowman, professor at the University of Tasmania. "Our review is both timely and of great relevance globally."

Carbon dioxide is the most important and well-studied greenhouse gas that is emitted by burning plants. Other atmospheric changes caused by fires are increases in the greenhouse gas methane, increased aerosol particulates from smoke, and the changing reflectance of a charred landscape. Consequences of large fires also have huge economic, environmental, and health costs, report the authors.

The authors state, "Earth is intrinsically a flammable planet due to its cover of carbon-rich vegetation, seasonally dry climates, atmospheric oxygen, widespread lightning, and volcano ignitions. Yet, despite the human species' long-held appreciation of this flammability, the global scope of fire has been revealed only recently by satellite observations, available beginning in the 1980s."

They note, however, that satellites cannot adequately capture fire activity in ecosystems with very long fire intervals, or those with highly variable fire activity.

Co-lead author Jennifer Balch, a postdoctoral fellow at NCEAS, explains that there are bigger and more frequent fires from the western U.S. to the tropics. There are "fires where we don't normally see fires," she says, noting that in the humid tropics a lot of deforestation fires are occurring, usually to expand agriculture or cattle ranching. "Wet rainforests have not historically experienced fires at the frequency that they are today. During extreme droughts, such as in 97-98, Amazon wildfires burned through 39,000 square kilometers of forest."

She explains the importance of the article: "This synthesis is a prerequisite for adaptation to the apparent recent intensification of fire feedbacks, which have been exacerbated by climate change, rapid land cover transformation, and exotic species introductions –– that collectively challenge the integrity of entire biomes."

The authors acknowledge that their estimate of fire's influence on climate is just a start, and they highlight major research gaps that must be addressed in order to understand the complete contribution of fire to the climate system.

Balch notes that a holistic fire science is necessary, and points out fire's true importance. "We don't think about fires correctly," she said. "Fire is as elemental as air or water. We live on a fire planet. We are a fire species. Yet, the study of fire has been very fragmented. We know lots about the carbon cycle, the nitrogen cycle, but we know very little about the fire cycle, or how fire cycles through the biosphere."

Research Contacts:

Jennifer Balch is available at
(202) 360-0923 (cell),
(805) 892-2522 (office),
or balch@nceas.ucsb.edu


David Bowman is available at
042 88 94 500 (cell),
Tel (Int) +61 3 6226 1943,
Tel (Aus) 03 6226 1943,
or david.bowman@utas.edu.au

sábado, 16 de mayo de 2009

New Ocean Circulation Experiment has Potential Big Climate Model Impact


From: Editor, ENN, based on an artilce from eurekalert
Published May 15, 2009 02:00 PM

New research by Duke University, in conjunction with the Woods Hole Oceanographic Institution is casting doubt on long-held theories of North Atlantic Ocean circulation patterns. This research, supported by the National Science Foundation is important since oceanic circulation is one of the key factors in current atmospheric circulation models, and therefore critical starting points for climate modeling.


A 50-year-old model of ocean currents had shown this southbound subsurface flow of cold water forming a continuous loop with the familiar northbound flow of warm water on the surface, called the Gulf Stream.

"Everybody always thought this deep flow operated like a conveyor belt, but what we are saying is that concept doesn't hold anymore," said Duke oceanographer Susan Lozier. "So it's going to be more difficult to measure these climate change signals in the deep ocean."

And since cold Labrador seawater is thought to influence and perhaps moderate human-caused climate change, this finding may affect the work of global warming forecasters.


ADVERTISEMENT


"To learn more about how the cold deep waters spread, we will need to make more measurements in the deep ocean interior, not just close to the coast where we previously thought the cold water was confined," said Woods Hole's Amy Bower.

Lozier, a professor of physical oceanography at Duke's Nicholas School of the Environment and Bower, a senior scientist in the department of physical oceanography at the Woods Hole Institution, are co-principal authors of a report on the findings to be published in the May 14 issue of the research journal Nature.

For More: http://www.eurekalert.org/pub_releases/2009-05/du-cwo051309.php

viernes, 8 de mayo de 2009

NEW STORAGE SYSTEM DESIGN BRINGS HYDROGEN CARS CLOSER TO REALITY

Monday, 13 April 2009 14:14
Researchers have developed a critical part of a hydrogen storage system for cars that makes it possible to fill up a vehicle's fuel tank within five minutes with enough hydrogen to drive 300 miles.

The system uses a fine powder called metal hydride to absorb hydrogen gas. The researchers have created the system's heat exchanger, which circulates coolant through tubes and uses fins to remove heat generated as the hydrogen is absorbed by the powder.

The heat exchanger is critical because the system stops absorbing hydrogen effectively if it overheats, said Issam Mudawar, a professor of mechanical engineering who is leading the research.

"The hydride produces an enormous amount of heat," Mudawar said. "It would take a minimum of 40 minutes to fill the tank without cooling, and that would be entirely impractical."

Researchers envision a system that would enable motorists to fill their car with hydrogen within a few minutes. The hydrogen would then be used to power a fuel cell to generate electricity to drive an electric motor.

The research, funded by General Motors Corp. and directed by GM researchers Darsh Kumar, Michael Herrmann and Abbas Nazri, is based at the Hydrogen Systems Laboratory at Purdue's Maurice J. Zucrow Laboratories. In February, the team applied for three provisional patents related to this technology.

"The idea is to have a system that fills the tank and at the same time uses accessory connectors that supply coolant to extract the heat," said Mudawar, who is working with mechanical engineering graduate student Milan Visaria and Timothée Pourpoint, a research assistant professor of aeronautics and astronautics and manager of the Hydrogen Systems Laboratory. "This presented an engineering challenge because we had to figure out how to fill the fuel vessel with hydrogen quickly while also removing the heat efficiently. The problem is, nobody had ever designed this type of heat exchanger before. It's a whole new animal that we designed from scratch."

The metal hydride is contained in compartments inside the storage "pressure vessel." Hydrogen gas is pumped into the vessel at high pressure and absorbed by the powder.

"This process is reversible, meaning the hydrogen gas may be released from the metal hydride by decreasing the pressure in the storage vessel," Mudawar said. "The heat exchanger is fitted inside the hydrogen storage pressure vessel. Due to space constraints, it is essential that the heat exchanger occupy the least volume to maximize room for hydrogen storage."

Conventional automotive coolant flows through a U-shaped tube traversing the length of the pressure vessel and heat exchanger. The heat exchanger, which is made mostly of aluminum, contains a network of thin fins that provide an efficient cooling path between the metal hydride and the coolant.

"This milestone paves the way for practical on-board hydrogen storage systems that can be charged multiple times in much the same way a gasoline tank is charged today," said Kumar, a researcher at GM's Chemical & Environmental Sciences Laboratory and the GM R&D Center in Warren, Mich. "As newer and better metal hydrides are developed by research teams worldwide, the heat exchanger design will provide a ready solution for the automobile industry."

The researchers have developed the system over the past two years. Because metal hydride reacts readily with both air and moisture, the system must be assembled in an airtight chamber, Pourpoint said.

Research activities at the hydrogen laboratory involve faculty members from the schools of aeronautics and astronautics, mechanical engineering, and electrical and computer engineering.

http://news.uns.purdue.edu/x/2009a/090402MudawarHydrogen.html
   

MILLENIUMNATURALEZA


for look in spanish

AS UNIVERSITY PROFESSOR

AS UNIVERSITY PROFESSOR
with students of master environment management (UNH)

Parana

Parana
Parana university (Curitiva-Brasil) February 2009

Huancayo

Huancayo
golden forest - Huancayo - Perú-(April 2009)

AS BUSINESSMAN

AS BUSINESSMAN
PROPRIETOR MANAGER OF MILLENIUM RADIO 106.9 FM

MILLENIUM RADIO 106.9 FM

MILLENIUM RADIO 106.9 FM
VOICE AND FEELINGS AMAZONIAN, FROM LAMAS

Seguidores